Ethylene production with engineered Synechocystis sp PCC 6803 strains

نویسندگان

  • Vinod Puthan Veetil
  • S. Andreas Angermayr
  • Klaas J. Hellingwerf
چکیده

BACKGROUND Metabolic engineering and synthetic biology of cyanobacteria offer a promising sustainable alternative approach for fossil-based ethylene production, by using sunlight via oxygenic photosynthesis, to convert carbon dioxide directly into ethylene. Towards this, both well-studied cyanobacteria, i.e., Synechocystis sp PCC 6803 and Synechococcus elongatus PCC 7942, have been engineered to produce ethylene by introducing the ethylene-forming enzyme (Efe) from Pseudomonas syringae pv. phaseolicola PK2 (the Kudzu strain), which catalyzes the conversion of the ubiquitous tricarboxylic acid cycle intermediate 2-oxoglutarate into ethylene. RESULTS This study focuses on Synechocystis sp PCC 6803 and shows stable ethylene production through the integration of a codon-optimized version of the efe gene under control of the Ptrc promoter and the core Shine-Dalgarno sequence (5'-AGGAGG-3') as the ribosome-binding site (RBS), at the slr0168 neutral site. We have increased ethylene production twofold by RBS screening and further investigated improving ethylene production from a single gene copy of efe, using multiple tandem promoters and by putting our best construct on an RSF1010-based broad-host-self-replicating plasmid, which has a higher copy number than the genome. Moreover, to raise the intracellular amounts of the key Efe substrate, 2-oxoglutarate, from which ethylene is formed, we constructed a glycogen-synthesis knockout mutant (ΔglgC) and introduced the ethylene biosynthetic pathway in it. Under nitrogen limiting conditions, the glycogen knockout strain has increased intracellular 2-oxoglutarate levels; however, surprisingly, ethylene production was lower in this strain than in the wild-type background. CONCLUSION Making use of different RBS sequences, production of ethylene ranging over a 20-fold difference has been achieved. However, a further increase of production through multiple tandem promoters and a broad-host plasmid was not achieved speculating that the transcription strength and the gene copy number are not the limiting factors in our system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Engineering of Synechocystis sp. PCC 6803 for Production of the Plant Diterpenoid Manoyl Oxide

Forskolin is a high value diterpenoid with a broad range of pharmaceutical applications, naturally found in root bark of the plant Coleus forskohlii. Because of its complex molecular structure, chemical synthesis of forskolin is not commercially attractive. Hence, the labor and resource intensive extraction and purification from C. forskohlii plants remains the current source of the compound. W...

متن کامل

Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803

BACKGROUND Cyanobacteria are considered potential photosynthetic microbial cell factories for biofuel and biochemical production. Ethylene, one of the most important organic chemicals, has been successfully synthesized in cyanobacteria by introducing an exogenous ethylene-forming enzyme (Efe). However, it remains challenging to significantly improve the biosynthetic efficiency of cyanobacterial...

متن کامل

Identification of alcohol stress tolerance genes of Synechocystis sp. PCC 6803 using adaptive laboratory evolution

Background Synechocystis sp. PCC 6803 is an attractive organism for the production of alcohols, such as isobutanol and ethanol. However, because stress against the produced alcohol is a major barrier for industrial applications, it is highly desirable to engineer organisms with strong alcohol tolerance. Results Isobutanol-tolerant strains of Synechocystis sp. PCC 6803 were obtained by long-te...

متن کامل

Syringae Is Not Required for Stable Ethylene Production in Recombinant

Ethylene (C2H4) is a simple alkene of high commercial value due to multitude of large-scale uses in plastic industry, and as a potential fuel for spark-ignition piston engines. Currently ethylene is derived entirely from non-renewable sources, but it can also be produced directly from atmospheric CO2 via microbial biosynthesis in photosynthetic cyanobacterial hosts by the expression of ethylene...

متن کامل

Microevolution in Cyanobacteria: Re-sequencing a Motile Substrain of Synechocystis sp. PCC 6803

Synechocystis sp. PCC 6803 is a widely used model cyanobacterium for studying photosynthesis, phototaxis, the production of biofuels and many other aspects. Here we present a re-sequencing study of the genome and seven plasmids of one of the most widely used Synechocystis sp. PCC 6803 substrains, the glucose tolerant and motile Moscow or 'PCC-M' strain, revealing considerable evidence for recen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017